Opencv 环境配置
正文
cudnn.hpp报错cudnnSetConvolution2dDescriptor
template <typename Dtype>
inline void setConvolutionDesc(cudnnConvolutionDescriptor_t* conv,
cudnnTensorDescriptor_t bottom, cudnnFilterDescriptor_t filter,
int pad_h, int pad_w, int stride_h, int stride_w) {
#if CUDNN_VERSION_MIN(6, 0, 0)
CUDNN_CHECK(cudnnSetConvolution2dDescriptor(*conv,
pad_h, pad_w, stride_h, stride_w, 1, 1, CUDNN_CROSS_CORRELATION,
dataType<Dtype>::type));
#else
CUDNN_CHECK(cudnnSetConvolution2dDescriptor(*conv,
pad_h, pad_w, stride_h, stride_w, 1, 1, CUDNN_CROSS_CORRELATION));
#endif
}
win-caffe 配置SSD include
Proto 增加
42:
// The label (display) name and label id.
message LabelMapItem {
// Both name and label are required.
optional string name = 1;
optional int32 label = 2;
// display_name is optional.
optional string display_name = 3;
}
message LabelMap {
repeated LabelMapItem item = 1;
}
// Sample a bbox in the normalized space [0, 1] with provided constraints.
message Sampler {
// Minimum scale of the sampled bbox.
optional float min_scale = 1 [default = 1.];
// Maximum scale of the sampled bbox.
optional float max_scale = 2 [default = 1.];
// Minimum aspect ratio of the sampled bbox.
optional float min_aspect_ratio = 3 [default = 1.];
// Maximum aspect ratio of the sampled bbox.
optional float max_aspect_ratio = 4 [default = 1.];
}
// Constraints for selecting sampled bbox.
message SampleConstraint {
// Minimum Jaccard overlap between sampled bbox and all bboxes in
// AnnotationGroup.
optional float min_jaccard_overlap = 1;
// Maximum Jaccard overlap between sampled bbox and all bboxes in
// AnnotationGroup.
optional float max_jaccard_overlap = 2;
// Minimum coverage of sampled bbox by all bboxes in AnnotationGroup.
optional float min_sample_coverage = 3;
// Maximum coverage of sampled bbox by all bboxes in AnnotationGroup.
optional float max_sample_coverage = 4;
// Minimum coverage of all bboxes in AnnotationGroup by sampled bbox.
optional float min_object_coverage = 5;
// Maximum coverage of all bboxes in AnnotationGroup by sampled bbox.
optional float max_object_coverage = 6;
}
// Sample a batch of bboxes with provided constraints.
message BatchSampler {
// Use original image as the source for sampling.
optional bool use_original_image = 1 [default = true];
// Constraints for sampling bbox.
optional Sampler sampler = 2;
// Constraints for determining if a sampled bbox is positive or negative.
optional SampleConstraint sample_constraint = 3;
// If provided, break when found certain number of samples satisfing the
// sample_constraint.
optional uint32 max_sample = 4;
// Maximum number of trials for sampling to avoid infinite loop.
optional uint32 max_trials = 5 [default = 100];
}
// Condition for emitting annotations.
message EmitConstraint {
enum EmitType {
CENTER = 0;
MIN_OVERLAP = 1;
}
optional EmitType emit_type = 1 [default = CENTER];
// If emit_type is MIN_OVERLAP, provide the emit_overlap.
optional float emit_overlap = 2;
}
// The normalized bounding box [0, 1] w.r.t. the input image size.
message NormalizedBBox {
optional float xmin = 1;
optional float ymin = 2;
optional float xmax = 3;
optional float ymax = 4;
optional int32 label = 5;
optional bool difficult = 6;
optional float score = 7;
optional float size = 8;
}
// Annotation for each object instance.
message Annotation {
optional int32 instance_id = 1 [default = 0];
optional NormalizedBBox bbox = 2;
}
// Group of annotations for a particular label.
message AnnotationGroup {
optional int32 group_label = 1;
repeated Annotation annotation = 2;
}
// An extension of Datum which contains "rich" annotations.
message AnnotatedDatum {
enum AnnotationType {
BBOX = 0;
}
optional Datum datum = 1;
// If there are "rich" annotations, specify the type of annotation.
// Currently it only supports bounding box.
// If there are no "rich" annotations, use label in datum instead.
optional AnnotationType type = 2;
// Each group contains annotation for a particular class.
repeated AnnotationGroup annotation_group = 3;
}
----------------------------------------------------------------------
repeated NetState test_state = 27;
252:
// Evaluation type.
optional string eval_type = 41 [default = "classification"];
// ap_version: different ways of computing Average Precision.
// Check https://sanchom.wordpress.com/tag/average-precision/ for details.
// 11point: the 11-point interpolated average precision. Used in VOC2007.
// MaxIntegral: maximally interpolated AP. Used in VOC2012/ILSVRC.
// Integral: the natural integral of the precision-recall curve.
optional string ap_version = 42 [default = "Integral"];
// If true, display per class result.
optional bool show_per_class_result = 44 [default = false];
----------------------------------------------------------------------
repeated int32 stepvalue = 34;
311:
// the stepsize for learning rate policy "plateau"
repeated int32 plateau_winsize = 43;
----------------------------------------------------------------------
optional int32 current_step = 4 [default = 0]; // The current step for learning rate
379:
optional float minimum_loss = 5 [default = 1E38]; // Historical minimum loss
optional int32 iter_last_event = 6 [default = 0]; // The iteration when last lr-update or min_loss-update happend
----------------------------------------------------------------------
optional AccuracyParameter accuracy_param = 102;
493:
optional AnnotatedDataParameter annotated_data_param = 200;
optional DetectionEvaluateParameter detection_evaluate_param = 205;
optional DetectionOutputParameter detection_output_param = 204;
optional MultiBoxLossParameter multibox_loss_param = 201;
optional NormalizeParameter norm_param = 206;
optional PermuteParameter permute_param = 202;
optional PriorBoxParameter prior_box_param = 203;
optional VideoDataParameter video_data_param = 207;
----------------------------------------------------------------------
TransformationParameter
{
....
// Specify if we would like to randomly crop an image.
optional uint32 crop_size = 3 [default = 0];
558:
optional uint32 crop_h = 11 [default = 0];
optional uint32 crop_w = 12 [default = 0];
// Resize policy
optional ResizeParameter resize_param = 8;
// Noise policy
optional NoiseParameter noise_param = 9;
// Distortion policy
optional DistortionParameter distort_param = 13;
// Expand policy
optional ExpansionParameter expand_param = 14;
// Constraint for emitting the annotation after transformation.
optional EmitConstraint emit_constraint = 10;
----------------------------------------------------------------------
// Message that stores parameters used by data transformer for resize policy
message ResizeParameter {
//Probability of using this resize policy
optional float prob = 1 [default = 1];
enum Resize_mode {
WARP = 1;
FIT_SMALL_SIZE = 2;
FIT_LARGE_SIZE_AND_PAD = 3;
}
optional Resize_mode resize_mode = 2 [default = WARP];
optional uint32 height = 3 [default = 0];
optional uint32 width = 4 [default = 0];
// A parameter used to update bbox in FIT_SMALL_SIZE mode.
optional uint32 height_scale = 8 [default = 0];
optional uint32 width_scale = 9 [default = 0];
enum Pad_mode {
CONSTANT = 1;
MIRRORED = 2;
REPEAT_NEAREST = 3;
}
// Padding mode for BE_SMALL_SIZE_AND_PAD mode and object centering
optional Pad_mode pad_mode = 5 [default = CONSTANT];
// if specified can be repeated once (would fill all the channels)
// or can be repeated the same number of times as channels
// (would use it them to the corresponding channel)
repeated float pad_value = 6;
enum Interp_mode { //Same as in OpenCV
LINEAR = 1;
AREA = 2;
NEAREST = 3;
CUBIC = 4;
LANCZOS4 = 5;
}
//interpolation for for resizing
repeated Interp_mode interp_mode = 7;
}
message SaltPepperParameter {
//Percentage of pixels
optional float fraction = 1 [default = 0];
repeated float value = 2;
}
// Message that stores parameters used by data transformer for transformation
// policy
message NoiseParameter {
//Probability of using this resize policy
optional float prob = 1 [default = 0];
// Histogram equalized
optional bool hist_eq = 2 [default = false];
// Color inversion
optional bool inverse = 3 [default = false];
// Grayscale
optional bool decolorize = 4 [default = false];
// Gaussian blur
optional bool gauss_blur = 5 [default = false];
// JPEG compression quality (-1 = no compression)
optional float jpeg = 6 [default = -1];
// Posterization
optional bool posterize = 7 [default = false];
// Erosion
optional bool erode = 8 [default = false];
// Salt-and-pepper noise
optional bool saltpepper = 9 [default = false];
optional SaltPepperParameter saltpepper_param = 10;
// Local histogram equalization
optional bool clahe = 11 [default = false];
// Color space conversion
optional bool convert_to_hsv = 12 [default = false];
// Color space conversion
optional bool convert_to_lab = 13 [default = false];
}
// Message that stores parameters used by data transformer for distortion policy
message DistortionParameter {
// The probability of adjusting brightness.
optional float brightness_prob = 1 [default = 0.0];
// Amount to add to the pixel values within [-delta, delta].
// The possible value is within [0, 255]. Recommend 32.
optional float brightness_delta = 2 [default = 0.0];
// The probability of adjusting contrast.
optional float contrast_prob = 3 [default = 0.0];
// Lower bound for random contrast factor. Recommend 0.5.
optional float contrast_lower = 4 [default = 0.0];
// Upper bound for random contrast factor. Recommend 1.5.
optional float contrast_upper = 5 [default = 0.0];
// The probability of adjusting hue.
optional float hue_prob = 6 [default = 0.0];
// Amount to add to the hue channel within [-delta, delta].
// The possible value is within [0, 180]. Recommend 36.
optional float hue_delta = 7 [default = 0.0];
// The probability of adjusting saturation.
optional float saturation_prob = 8 [default = 0.0];
// Lower bound for the random saturation factor. Recommend 0.5.
optional float saturation_lower = 9 [default = 0.0];
// Upper bound for the random saturation factor. Recommend 1.5.
optional float saturation_upper = 10 [default = 0.0];
// The probability of randomly order the image channels.
optional float random_order_prob = 11 [default = 0.0];
}
// Message that stores parameters used by data transformer for expansion policy
message ExpansionParameter {
//Probability of using this expansion policy
optional float prob = 1 [default = 1];
// The ratio to expand the image.
optional float max_expand_ratio = 2 [default = 1.];
}
message AnnotatedDataParameter {
// Define the sampler.
repeated BatchSampler batch_sampler = 1;
// Store label name and label id in LabelMap format.
optional string label_map_file = 2;
// If provided, it will replace the AnnotationType stored in each
// AnnotatedDatum.
optional AnnotatedDatum.AnnotationType anno_type = 3;
}
// Message that store parameters used by DetectionEvaluateLayer
message DetectionEvaluateParameter {
// Number of classes that are actually predicted. Required!
optional uint32 num_classes = 1;
// Label id for background class. Needed for sanity check so that
// background class is neither in the ground truth nor the detections.
optional uint32 background_label_id = 2 [default = 0];
// Threshold for deciding true/false positive.
optional float overlap_threshold = 3 [default = 0.5];
// If true, also consider difficult ground truth for evaluation.
optional bool evaluate_difficult_gt = 4 [default = true];
// A file which contains a list of names and sizes with same order
// of the input DB. The file is in the following format:
// name height width
// ...
// If provided, we will scale the prediction and ground truth NormalizedBBox
// for evaluation.
optional string name_size_file = 5;
// The resize parameter used in converting NormalizedBBox to original image.
optional ResizeParameter resize_param = 6;
}
message NonMaximumSuppressionParameter {
// Threshold to be used in nms.
optional float nms_threshold = 1 [default = 0.3];
// Maximum number of results to be kept.
optional int32 top_k = 2;
// Parameter for adaptive nms.
optional float eta = 3 [default = 1.0];
}
message SaveOutputParameter {
// Output directory. If not empty, we will save the results.
optional string output_directory = 1;
// Output name prefix.
optional string output_name_prefix = 2;
// Output format.
// VOC - PASCAL VOC output format.
// COCO - MS COCO output format.
optional string output_format = 3;
// If you want to output results, must also provide the following two files.
// Otherwise, we will ignore saving results.
// label map file.
optional string label_map_file = 4;
// A file which contains a list of names and sizes with same order
// of the input DB. The file is in the following format:
// name height width
// ...
optional string name_size_file = 5;
// Number of test images. It can be less than the lines specified in
// name_size_file. For example, when we only want to evaluate on part
// of the test images.
optional uint32 num_test_image = 6;
// The resize parameter used in saving the data.
optional ResizeParameter resize_param = 7;
}
// Message that store parameters used by DetectionOutputLayer
message DetectionOutputParameter {
// Number of classes to be predicted. Required!
optional uint32 num_classes = 1;
// If true, bounding box are shared among different classes.
optional bool share_location = 2 [default = true];
// Background label id. If there is no background class,
// set it as -1.
optional int32 background_label_id = 3 [default = 0];
// Parameters used for non maximum suppression.
optional NonMaximumSuppressionParameter nms_param = 4;
// Parameters used for saving detection results.
optional SaveOutputParameter save_output_param = 5;
// Type of coding method for bbox.
optional PriorBoxParameter.CodeType code_type = 6 [default = CORNER];
// If true, variance is encoded in target; otherwise we need to adjust the
// predicted offset accordingly.
optional bool variance_encoded_in_target = 8 [default = false];
// Number of total bboxes to be kept per image after nms step.
// -1 means keeping all bboxes after nms step.
optional int32 keep_top_k = 7 [default = -1];
// Only consider detections whose confidences are larger than a threshold.
// If not provided, consider all boxes.
optional float confidence_threshold = 9;
// If true, visualize the detection results.
optional bool visualize = 10 [default = false];
// The threshold used to visualize the detection results.
optional float visualize_threshold = 11;
// If provided, save outputs to video file.
optional string save_file = 12;
}
// Message that store parameters used by MultiBoxLossLayer
message MultiBoxLossParameter {
// Localization loss type.
enum LocLossType {
L2 = 0;
SMOOTH_L1 = 1;
}
optional LocLossType loc_loss_type = 1 [default = SMOOTH_L1];
// Confidence loss type.
enum ConfLossType {
SOFTMAX = 0;
LOGISTIC = 1;
}
optional ConfLossType conf_loss_type = 2 [default = SOFTMAX];
// Weight for localization loss.
optional float loc_weight = 3 [default = 1.0];
// Number of classes to be predicted. Required!
optional uint32 num_classes = 4;
// If true, bounding box are shared among different classes.
optional bool share_location = 5 [default = true];
// Matching method during training.
enum MatchType {
BIPARTITE = 0;
PER_PREDICTION = 1;
}
optional MatchType match_type = 6 [default = PER_PREDICTION];
// If match_type is PER_PREDICTION, use overlap_threshold to
// determine the extra matching bboxes.
optional float overlap_threshold = 7 [default = 0.5];
// Use prior for matching.
optional bool use_prior_for_matching = 8 [default = true];
// Background label id.
optional uint32 background_label_id = 9 [default = 0];
// If true, also consider difficult ground truth.
optional bool use_difficult_gt = 10 [default = true];
// If true, perform negative mining.
// DEPRECATED: use mining_type instead.
optional bool do_neg_mining = 11;
// The negative/positive ratio.
optional float neg_pos_ratio = 12 [default = 3.0];
// The negative overlap upperbound for the unmatched predictions.
optional float neg_overlap = 13 [default = 0.5];
// Type of coding method for bbox.
optional PriorBoxParameter.CodeType code_type = 14 [default = CORNER];
// If true, encode the variance of prior box in the loc loss target instead of
// in bbox.
optional bool encode_variance_in_target = 16 [default = false];
// If true, map all object classes to agnostic class. It is useful for learning
// objectness detector.
optional bool map_object_to_agnostic = 17 [default = false];
// If true, ignore cross boundary bbox during matching.
// Cross boundary bbox is a bbox who is outside of the image region.
optional bool ignore_cross_boundary_bbox = 18 [default = false];
// If true, only backpropagate on corners which are inside of the image
// region when encode_type is CORNER or CORNER_SIZE.
optional bool bp_inside = 19 [default = false];
// Mining type during training.
// NONE : use all negatives.
// MAX_NEGATIVE : select negatives based on the score.
// HARD_EXAMPLE : select hard examples based on "Training Region-based Object Detectors with Online Hard Example Mining", Shrivastava et.al.
enum MiningType {
NONE = 0;
MAX_NEGATIVE = 1;
HARD_EXAMPLE = 2;
}
optional MiningType mining_type = 20 [default = MAX_NEGATIVE];
// Parameters used for non maximum suppression durig hard example mining.
optional NonMaximumSuppressionParameter nms_param = 21;
optional int32 sample_size = 22 [default = 64];
optional bool use_prior_for_nms = 23 [default = false];
}
// Message that stores parameters used by NormalizeLayer
message NormalizeParameter {
optional bool across_spatial = 1 [default = true];
// Initial value of scale. Default is 1.0 for all
optional FillerParameter scale_filler = 2;
// Whether or not scale parameters are shared across channels.
optional bool channel_shared = 3 [default = true];
// Epsilon for not dividing by zero while normalizing variance
optional float eps = 4 [default = 1e-10];
}
message PermuteParameter {
// The new orders of the axes of data. Notice it should be with
// in the same range as the input data, and it starts from 0.
// Do not provide repeated order.
repeated uint32 order = 1;
}
// Message that store parameters used by PriorBoxLayer
message PriorBoxParameter {
// Encode/decode type.
enum CodeType {
CORNER = 1;
CENTER_SIZE = 2;
CORNER_SIZE = 3;
}
// Minimum box size (in pixels). Required!
repeated float min_size = 1;
// Maximum box size (in pixels). Required!
repeated float max_size = 2;
// Various of aspect ratios. Duplicate ratios will be ignored.
// If none is provided, we use default ratio 1.
repeated float aspect_ratio = 3;
// If true, will flip each aspect ratio.
// For example, if there is aspect ratio "r",
// we will generate aspect ratio "1.0/r" as well.
optional bool flip = 4 [default = true];
// If true, will clip the prior so that it is within [0, 1]
optional bool clip = 5 [default = false];
// Variance for adjusting the prior bboxes.
repeated float variance = 6;
// By default, we calculate img_height, img_width, step_x, step_y based on
// bottom[0] (feat) and bottom[1] (img). Unless these values are explicitely
// provided.
// Explicitly provide the img_size.
optional uint32 img_size = 7;
// Either img_size or img_h/img_w should be specified; not both.
optional uint32 img_h = 8;
optional uint32 img_w = 9;
// Explicitly provide the step size.
optional float step = 10;
// Either step or step_h/step_w should be specified; not both.
optional float step_h = 11;
optional float step_w = 12;
// Offset to the top left corner of each cell.
optional float offset = 13 [default = 0.5];
}
message VideoDataParameter{
enum VideoType {
WEBCAM = 0;
VIDEO = 1;
}
optional VideoType video_type = 1 [default = WEBCAM];
optional int32 device_id = 2 [default = 0];
optional string video_file = 3;
// Number of frames to be skipped before processing a frame.
optional uint32 skip_frames = 4 [default = 0];
}
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
libboost_date_time-vc120-mt-gd-1_59.lib libboost_filesystem-vc120-mt-gd-1_59.lib libboost_system-vc120-mt-gd-1_59.lib libglog.lib hdf5_hl.lib hdf5_cpp.lib libopenblas.dll.a curand.lib cudart.lib hdf5.lib cublas.lib cuda.lib cudnn.lib libprotobuf.lib gflagsd.lib